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EXECUTIVE SUMMARY

The goal of this milestone was to port the CEED software stack, including Nek, MFEM and libCEED to
Frontier and/or Aurora early access hardware, work on optimizing the performance on AMD and Intel GPUs,
and demonstrate impact in CEED-enabled ECP applications.

As part of this milestone, we also organized the next CEED annual meeting (CEED6AM) which included
representatives from ECP applications, vendors and software technology projects, hosted the Nek user meeting
and MFEM AWS tutorial, and worked on a number of additional software and algorithmic improvements.

The specific tasks addressed in this milestone were as follows.

• CEED-T21 (ADCD04-91): Port full CEED software stack to Frontier/Aurora EA, report benchmark
results.

• CEED-T22 (ADCD04-92): Help in application porting to Frontier/Aurora EA, develop application-
specific optimizations.

• CEED-T23 (ADCD04-93): Multi-node scaling on Frontier (strong and weak scaling).

• CEED-T24 (ADCD04-94): CEED Annual meeting (CEED6AM).
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1. INTRODUCTION

In this milestone we ported the CEED software stack, including Nek, MFEM and libCEED to Frontier
and/or Aurora early access hardware, worked on optimizing the performance on AMD and Intel GPUs,
and demonstrated impact in CEED-enabled ECP applications. These activities are described in Section 2
and Section 3. As part of this milestone, we also organized the next CEED a meeting (CEED6AM) which
included representatives from ECP applications, vendors and software technology projects, hosted the Nek
user meeting and MFEM AWS tutorial, and worked on a number of additional software and algorithmic
improvements. These activities are described in Section 4 and Section 5.

2. CEED PERFORMANCE IMPROVEMENTS FOR FRONTIER

2.1 NekRS performance on Summit, Perlmutter, Polaris, Crusher and Frontier for ExaSMR

We consider ExaSMR’s 17×17 rod-bundle geometry and extend the domain in streamwise direction with 10,
17, 170 and 6340 layers keeping the mesh density same. In this report, we present the 10-layer and 170-layer
cases, which correspond to 277 thousand spectral elements of order N = 7, for a total of n = .27M ×73 = 95M
grid points and 471 thousand spectral elements of order N = 7, for a total of n = .47M ×73 = 161M grid
points, respectively.

Figure 1 shows several scaling metrics for 10-layer case across the platforms of Crusher, Summit, Perlmutter
and Polaris. In the top row, left, we have the classic strong-scaling plot of time-per-step (tstep), in seconds,
versus number of MPI ranks, P . (We run one MPI rank per V100 or A100 on the NVIDIA-based nodes, and
one MPI rank per GCD on the AMD MI250X nodes.) For early run results (shown here) on Crusher, there
was a 2× slow down if P was not a multiple of 8, but that problem is no longer manifest with the current
system software. Compared to the other platforms, Perlmutter and Polaris (GPUDirect in green dashed
lines), demonstrate the best per rank performance provided that they are using GPUDirect with Slingshot
10. (Slingshot 11, newly installed on Perlmutter, yields a 1.4–1.5× improvement in MPI bandwidth but for
reasons yet unresolved yields a slow-down for NekRS at certain node counts.)

It is important to point out that these strong-scaling plots start from a high level of performance.
NekRS currently leverages extensive tuning of several key FP64 and FP32 kernels in libParanumal, including
the standard spectral element Laplacian matrix-vector product, local tensor-product solves using fast
diagonalization, and dealiased evaluation of the advection operator on a finer set of quadrature points. These
kernels, which are described in a forthcoming article [37], are sustaining up to 3 TFLOPS FP64 and 5–8
TFLOPS FP32, per GPU or GCD. At the strong-scale limit, with MPI overhead, NekRS is sustaining ≈ 1
TFLOPS per rank (i.e., per GPU or GCD).

An important figure of merit is n0.8, which is the value of n/P at which the simulation realizes 80%
parallel efficiency. From the second row, right, we see that n0.8 = 2.5M for Perlmutter/Crusher and 2M
for Polaris (GPUDirect in green dashed lines) For Polaris without GPUDirect (magenta solid line) we find
n0.8 = 4.5M. The plot on row 3, left, indicates that a remarkably small tstep value of 0.015 seconds per step
is realizable on Polaris, albeit at 25% efficiency.

The plot on the last row, left, shows that the time in the compute-intensive, communication-minimal
advection update strong-scales quite well, as would be expected. Aside from the anomalous behavior of
(earlier-OS-based) Crusher for P not a multiple of 8, the curves for the more modern architectures collapse to
nearly the same performance. This kernel is sustaining 3–4 TFLOPS FP64 on these architectures (without
communication). In contrast, the last row, right, shows the performance for the communication-intensive
coarse grid solve, which is performed using Hypre on the host CPUs. Here, both Crusher and Polaris show
relatively poor performance at small values of n/P . We remark also that using Summit’s large memory nodes
generated a distinct (and worse) performance curve different than the standard 16GB nodes.

Figure 2 shows similar scaling metrics as in Figure 1 for 170-layer case across the platforms of Crusher,
Summit, Perlmutter and Polaris, except that we show two different rocm versions using rocm/5.1.0 and
rocm/5.2.0 with cray-mpich/8.1.19. Here we observe rocm/5.1.0 is slightly faster performance compared
to rocm/5.2.0 with significant speedup in coarse grid solve. No GPUDirect option on Polaris (magenta
solid lines) shows severe performance degradation as the number of ranks increases. We also observe that
n0.8 = 5M for Perlmutter, Crusher and Polaris (GPUDirect in green dashed lines) as the number of ranks
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Figure 1: Strong-scaling on Crusher, Summit, Perlmutter and Polaris (17×17
rod bundle with 10 layers).
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Figure 2: Strong-scaling on Crusher, Summit, Perlmutter and Polaris (17×17
rod bundle with 170 layers).
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increases.

Frontier vs. Crusher. In collaboration with OLCF, the CEED team performed scaling studies on Frontier
using NekRS version 22.0. Simulations on Frontier were run by John Holmen at OLCF while those on Crusher
were run by the CEED team. On Frontier, rocm/5.1.0 and cray-mpich/8.1.17 were used. On Crusher,
simulations were performed with variation of versions such as rocm/5.1.0, rocm/5.2.0, cray-mpich/8.1.16

and cray-mpich/8.1.19. On Crusher, rocm/5.1.0 is faster than rocm/5.2.0. We observe that the performance
on Frontier is better than that on Crusher.

We consider ExaSMR’s 17×17 rod-bundle geometry and extend the domain in streamwise direction with
10, 17, 170 and 6340 layers keeping the mesh density same. In this report, we present the 170-layer case,
which corresponds to 4.7 million spectral elements of order N = 7, for a total of n = 4.7M ×73 = 1.6B grid
points.

Figure 3: Strong-scaling on Frontier (cray-mpich/8.1.17, rocm/5.1.0) and
Crusher (cray-mpich/8.1.19, rocm/5.2.0) for rod17 × 17 with 170 layers (E =
27700 × 170). Upper Left: time-per-step vs. n/P for Frontier and Crusher
Upper Right: Comparative time-per-step vs. n/P for Crusher (MI250X), Sum-
mit (V100), Perlmutter (A100), and Polaris (A100). Lower Left: Time in the
work-intensive advection operator for Frontier and Crusher. Lower Right: Time
in the communication-intensive coarse-grid solve for Frontier and Crusher.

Figure 3 demonstrates the scaling performance on Frontier in comparison to that on Crusher and to
Summit, Perlmutter, and Polaris. The upper-left plot shows the time-per-step vs. the number of points
per MPI rank, n/P , where P is the number of GCDs. We run a single MPI rank per GCD. The plot
indicates that Frontier is slightly faster than Crusher for this case. The lower left plot shows that Frontier
and Crusher deliver the same performance on the compute-intensive makef kernel, which evaluates the
advection term for the Navier-Stokes equations. By contrast, the lower right plot shows Crusher is a bit
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slower for the communication-intensive coarse-grid solve, which is part of the multigrid preconditioner for the
pressure-Poisson problem. The solve is performed on the host CPUs using algebraic multigrid with Hypre.
We remark that Frontier realizes 80% parallel efficiency at n/P ≈ 3 million points per rank, which would
normally be viewed as the strong-scale limit for NekRS simulations on this platform.

Finally, returning to the top right figure, which is similar to the top left, we see that Crusher is faster
than Summit, but not quite as fast as the A100-based Perlmutter (NERSC) and Polaris (ALCF) platforms.
Moreover, the plot shows a dashed black line which are times measured several months ago on Crusher when
P was not a multiple of 8. In these cases, performance was about half of that when P is a multiple of 8. This
issue has now been resolved and all the Crusher results collapse to the faster (lower) line. Similarly, early
results on Polaris without GPUDirect support (the magenta line) have been superseded by improved results
(green line) now that GPUDirect is available on Polaris. In this case, Polaris and Perlmutter agree, when
using Slingshot 10 for the network. The recent upgrade to Slingshot 11 on Perlmutter has led to regressed
performance (as much as 4×) for NekRS at certain values of P . That issue is under investigation.

2.2 AMR-Wind and NekRS performance on Summit and Crusher for ExaWind

In collaboration with the ExaWind team (Michael Sprague, Michael Brazell and Matthew Churchfield at
NREL), we examined large-eddy-simulation modeling approaches [35], and computational performance of two
open-source computational fluid dynamics codes for the simulation of atmospheric boundary layer (ABL) flows
that are of direct relevance to wind energy production. The first is NekRS, a high-order, unstructured-grid,
spectral element code. The second, AMR-Wind, is a block-structured, second-order finite-volume code with
adaptive-mesh-refinement capabilities. The objective of this study is to co-develop these codes in order to
improve model fidelity and performance for each. These features will be critical for running ABL-based
applications such as wind farm analysis on advanced computing architectures. To this end, we investigated
the performance of NekRS and AMR-Wind on the OLCF Summit, using 4 to 800 nodes (24 to 4,800 NVIDIA
V100 GPUs), and Crusher, using (18 to 384 GCDs on AMD MI250X GPUs). We compared strong- and
weak-scaling capabilities, linear solver performance, and time to solution. We also identified leading inhibitors
to parallel scaling. Further detailed studies are reported in [28].

Strong Scaling Test Sets
Domain size Grid Points (n) ∆x (m) ∆t (s)

[400 m]3 512 × 512 × 512 0.78 .062500
[400 m]3 1024 × 1024× 1024 0.39 .031250
[400 m]3 2048 × 2048× 2048 0.19 .015625

Weak Scaling Test Sets
Domain size Grid Points (n) ∆x (m) ∆t (s)

400 m × 400 m × 400 m 512 × 512 ×512 0.78 .0625
800 m × 800 m × 400 m 1024 × 1024 ×512 0.78 .0625

1600 m × 1600 m × 400 m 2048 × 2048 ×512 0.78 .0625
3200 m × 3200 m × 400 m 4096 × 4096 ×512 0.78 .0625

Table 1: Problem setup for strong and weak scaling studies.

Here we compare performance and tuning for the two codes. For each case, the codes use the same
spatial resolution, ∆x, and timestep size, ∆t. Each code uses iteration tolerances of 10−4 and 10−6 for the
respective 2-norm residuals of the pressure-Poisson and velocity-Helmholtz problems. For purposes of timings,
we use the solution at 6 hours as an initial condition in each case in order to ensure that performance studies
are done over a timeframe in which the solutions have a representative turbulent flow. Table 1 provides a
summary of the test parameters, in physical units, that are used for the strong- and weak-scaling studies.
The spectral element cases use 8th-order polynomial basis (N = 8) with a number of gridpoints given by

n = EN3. For these cases we take ∆x to be the average grid spacing in each direction (i.e., 400 m / n
1
3 ). For

the weak-scale study, the domain height is fixed at 400 m while the dimensions are increased in the x and y
directions as n is increased. In order to avoid initial transient behavior, the average (wall) time per step,
tstep, in seconds is measured over steps 101–200.

We begin with performance optimization, profiling analysis, and CPU versus GPU comparisons. NekRS
GPU performance tuning on Summit is demonstrated in detail in [16, 29]. The base libParanumal kernels
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AMR-Wind: Performance progress with AMReX library updates
Last 200 steps averaged from 1000-step run on 8 nodes using n = 5123

Old Version Intermediate Version New Version
(s) [%] (s) [%] (s) [%]

Wall time per timestep 3.3200e-01 100 2.4100e-01 100 2.2500e-01 100
Advection 2.9814e-02 8.98 2.6920e-02 11.17 2.8687e-02 12.75
MAC Projection 6.2582e-02 18.85 6.2660e-02 26.00 6.3135e-02 28.06
Pressure Solve 7.3671e-02 22.19 7.3481e-02 30.49 6.3180e-02 28.08
Velocity Solve 1.1401e-01 34.34 3.9669e-02 16.46 3.9307e-02 17.47
Scalar Solve 3.4827e-02 10.49 2.2148e-02 9.19 1.5930e-02 7.08
Fillpatch 1.5538e-02 4.68 1.4990e-02 6.22 1.5030e-02 6.68

Table 2: AMR-Wind performance optimization.

have their origins in the work of Warburton and co-workers [8, 33, 9, 2]. A key algorithmic component is the
Chebyshev-accelerated Schwarz-based p-multigrid for the pressure solve [31], which is performed in 32-bit
precision (e.g., as in [15]) to reduce injection-bandwidth pressure on the Summit network interface cards.
Communication for the nearest-neighbor communication (direct-stiffness summation in the finite element
or spectral element context [10]) is overlapped with computation whenever it proves to be effective, which
can yield as much as 10–15% savings in NS applications. At the strong-scale limit of ≈ 2M points per GPU,
there are enough points interior to each rank’s subdomain to balance out the communication overhead for the
gather-scatter exchanges, at least at the fine-mesh level evaluations. For the coarser p-multigrid levels, it is
not always the case that one can cover the communication with work. When initializing the communication
kernels for each level of the p-multigrid solver, NekRS selects the fastest of several available communication
strategies (e.g., overlapping, pack-on device or host, GPU direct or via the host), which are determined by
timing tests during runtime setup. These unit tests also report the observed messaging bandwidth and thus
provide insight into possible anomalous system behavior, which is useful when porting relatively new code to
relatively new and unknown HPC platforms. For example, from existing logfiles, we were able to compare
the observed bandwidth for several gather-scatter exchanges on NERSC’s Perlmutter platform before and
after a network update from Cray’s Slingshot 10 to Slingshot 11, as shown below.

SS10:

pw+device MPI: 7.37e-05s / bi-bw: 54.5GB/s/rank

pw+device MPI: 5.16e-05s / bi-bw: 100.2GB/s/rank

pw+device MPI: 3.84e-05s / bi-bw: 33.6GB/s/rank

pw+host MPI: 2.46e-05s / bi-bw: 3.6GB/s/rank

SS11:

pw+device MPI: 4.38e-05s / bi-bw: 91.8GB/s/rank

pw+device MPI: 3.47e-05s / bi-bw: 148.8GB/s/rank

pw+device MPI: 2.74e-05s / bi-bw: 47.2GB/s/rank

pw+host MPI: 1.66e-05s / bi-bw: 5.4GB/s/rank

Here, SS10 indicates Slingshot 10, and SS11 indicates Slingshot 11, which shows about a 1.5× improvement
over SS10. The listings also show which communication mode was used. We see that pw+device, which stands
for pairwise device-to-device exchange (i.e., via GPU-direct) is used in most instances. The pw+host, which
indicates the use of pairwise exchanges via the host, is used only in the case of many short messages, which is
typically the scenario at the coarsest levels of the p-multigrid solver.

Over the course of the collaboration, AMR-Wind realized a 1.4× speedup with some improvements
derived through AMReX library updates. The performance progress is demonstrated in Table 2, where the
rows present a timing breakdown of a typical flow time step. Advection involves predicting and forming
the advection term using Godunov PPM WENO. MAC projection is a Poisson equation linear solve with
a 7-point stencil that ensures that the face velocities are divergence free. The pressure solve is a Poisson
equation linear solve with a 27-point stencil that approximately corrects the cell velocity to be divergence
free at the end of the time step. Velocity and scalar solve are Helmholtz equations with a 7-point stencil, and
Fillpatch performs all communication within and across processors outside of the linear solver communication.
In the table, the old version is AMR-Wind using AMReX from April 2021. The intermediate version is the
same source code but with improvements to the linear solver settings. In particular, the components of the
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Nsight-Compute Profiling: CUDA Kernel Statistics
11 nodes (66 GPUs), n/P = 2.03M , n = 5123, 2000 steps

NekRS
Time Total Time Instances Average Name Remark

(%) (ms) (µs)
7.2 1438.604 3327 432.402 subCycleStrongCubatureVolumeHex3D dealiased vel. adv.
6.6 1320.502 8002 165.021 gatherScatterMany doubleAdd FP64 local gather-scatter
5.1 1017.806 8144 124.976 packBuf doubleAdd FP64 packing for gs
5.0 1009.247 3533 285.663 subCycleStrongCubatureVolumeHex3D dealias scalar adv.
4.7 935.298 251 3726.289 scatterMany double FP64 scatter
4.4 879.495 8144 107.993 unpackBuf doubleAdd FP64 gather
3.3 667.776 3192 209.203 subCycleRKUpdate RK4 vector update
2.9 577.150 850 679.000 ellipticStressPartialAxCoeffHex3D viscous op. eval.
2.4 480.331 2788 172.285 ellipticPartialAxHex3D pressure op. eval.

AMR-Wind
Time Total Time Instances Average Name Remark

(%) (ms) (µs)
15.0 1890.142 142823 13.234 fab to fab array box local copy
9.9 1256.128 12800 98.148 MLNodeLaplacian::Fsmooth multigrid smoother
6.9 873.629 24800 35.227 amrex::Copy multiple array box parallel copy
5.9 738.200 5600 131.821 MLABecLaplacian::Fapply Laplacian op. eval.
4.5 564.742 43200 13.072 MLPoisson::Fsmooth multigrid smoother
3.5 438.271 6800 64.451 MultiFab::LinComb vector-vector addition
3.1 394.024 3200 123.132 MLABecLaplacian::normalize normalize solution
3.0 384.391 800 480.488 godunov::compute fluxes advection momentum
2.9 359.910 800 449.887 godunov::compute fluxes advection scalar
2.7 344.575 11800 29.201 MultiFab::Xpay vector-vector addition
2.4 303.2 29850 11.085 FabArray::setVal set value of array box

Table 3: CUDA kernel statistics from NVIDIAr NsightTM profiler using nsys

profile --stats=true -t nvtx,cuda.

momentum equations are solved separately instead of as a coupled tensor solve. The velocity and scalar
(temperature) linear systems are solved by using bi-conjugate gradient iteration instead of a full geometric
multigrid approach. In Table 2 we see that these optimizations reduce the velocity solve time by almost 3×
(.114 s to .039 s) and the scalar solve time by 1.5× (.035 s to .022 s). The new version is AMR-Wind based
on AMReX from 2022 with the same improved linear system settings. Here the scalar solve improves by
another factor of 1.5. and the pressure solve is reduced from .0073 s to .0063 s per step.

For AMR-Wind, Table 3 more clearly indicates the elliptic solves as leading cost contributors. This
cost is also reflected in Figure 4, where the two largest contributors to run time are the pressure solve and
the MAC projection onto a divergence-free space. In fact, these plots show that the requirement of two
Poisson-like solves for AMR-Wind is the principal cause for discrepancy in run-time between the two codes.
MAC projection is solved using geometric multigrid. While not necessary, it does provide more robustness
and increases the stability of the scheme to CFL=2. If it did not require the MAC step, AMR-Wind would
be faster on 4 nodes than NekRS. pressureSolve is a Poisson solve that is used at the end of the timestep to
form an approximate divergence-free velocity at the cell center; it is a node-based 27 point stencil, and the
linear system is solved using geometric multigrid. scalarSolve and velocitySolve are both Helmholtz solves
that are cell-based 7 point stencils, the scalarSolve advances in time the potential Temperature equation and
velocitySolve is three separate solves to advance each of the momentum equations in time. BiCG is used to
solve all of the linear Helmholtz subproblems. The advection terms in the governing equations are discretized
using a Godunov WENO-Z scheme to provide these terms on the cell faces at time tn+ 1

2 . Other function
calls comprise source term calculations, boundary conditions, planar averaging, communication (excluding
linear solve communication), linear solve setup, and copying solution arrays.

For AMR-Wind on both Summit and Crusher, the time per step, tstep, decreases with increasing node
count as each component of the timestep takes less time. Both Poisson solves, however, take a higher
percentage of the time step as P is increased, which reflects the communication-intensive nature of the Poisson
problem. Overall, Crusher is providing better performance than Summit. This is partly because there are
more GPUs per node (8 versus 6) but also because the mesh decomposition has better load balancing for
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Figure 4: NekRS vs AMR-Wind GPU cost breakdown on Summit (top) and
Crusher (bottom), using n = 5123 and 2000 steps.

AMR-Wind. A problem size of 5123 is more easily partitioned by 8 GPUs/node versus 6 GPUs/node. With
16 Crusher nodes (128 GPUs) a time per timestep of tstep=0.11 s is achieved with AMR-Wind. Further
scaling out with Summit the lowest time per timestep was 0.128 s on 128 Summit nodes (768 GPUs), as
discussed below.

For NekRS, we start the GPU analysis with NVIDIA’s profiling tools. Table 3 summarizes the kernel-level
metrics for the critical kernels, which are identified with NVIDIA’s Nsight Systems. At this granularity, the
table indicates that the bulk of the time for NekRS is spent evaluating the dealiased advection operator
(subCycleStrongCubatureVolumeHex3D) both for the velocity vectors and for the temperature. Other leading
consumers are the gather-scatter operations. Largely missing from this table for NekRS is the time spent in
the pressure preconditioner, which is separated across many kernels for the various levels of p-multigrid. Each
NekRS job tracks basic runtime statistics using a combination of MPI Wtime and cudaDeviceSynchronize or
CUDA events. These are output every 500 time steps unless the user specifies otherwise. From these, we
collect aggregate timing breakdowns, roughly following the physical substeps of advection, pressure, and
viscous- thermal-updates, plus tracking of known communication bottlenecks such as the pMG coarse-grid
solve for the pressure preconditioner. Figure 4 shows the cost breakdown for this type of analysis over node
counts ranging from 4 to 16. At lower node counts, the bulk of the NekRS time is spent in the makef and
makeq (advection) routines, which are respectively responsible for setting up the right-hand-sides for the
momentum and energy equations. To allow a larger CFL, the ABL simulations use characteristics-based
timestepping, which involves solving a sequence of hyperbolic subproblems on the interval [tn−2, tn] (one
for each velocity component and one for temperature) [27, 30]. Each subproblem takes several substeps
using the dealiased advection operator, which performs quadrature on a 11× 11× 11 grid in each element.
These substeps are thus compute-intensive but not communication intensive, so they scale relatively well.
velocitySolve and scalarSolve, which involve communication-free diagonal preconditioning for conjugate
gradient approach, show similar scaling behavior. As with AMR-Wind, we see clearly in Figure 4 that the
pressure solve not scale as well as the other components.

We remark that Figure 4 indicates a significant amount of time is spent in udfExecuteStep. The majority
of that cost results from the recently adopted mean-field eddy viscosity model, which requires several planar
averages per time step and is currently implemented as a user-defined function. For these calculations,
which have low pressure and velocity iteration counts, the frequently called planar average utility has a
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significant impact on runtime (about 20%). Planar averaging is typically a post-processing operation that is
not performed on every step, but clearly it will need to be optimized in this LES application.

Figure 5: NekRS and AMR-Wind: CPU vs. GPU performance on Summit: 100
steps average from 200 step runs for n = 5123.

Figure 5 shows CPU and GPU strong-scaling performance for each code on Summit. The upper figures
show standard time vs. node-count plots, which clearly indicate that it is easier to strong-scale on the CPU.
On Summit, however, that point is moot given that one needs 128 nodes using a CPU-only configuration in
order to get to the same time-per-step as using 4 nodes with 6 GPUs each (i.e., a factor of 32 difference in
required node-hours to do the same work).

Figure 6: NekRS vs. AMR-Wind strong and weak scaling on Summit GPUs.

We next consider GPU-only performance on Summit using a single V100 per MPI rank. Figure 6, top,
shows performance in terms of tstep for strong scaling as a function of the number of GPUs, P , in the left
column and as a function of number of points per rank, n/P , in the center column. Weak-scaling performance
is presented in the right column. The wall-time figure also shows the ideal speed-up curves scaling as P−1.
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Strong-Scaling on Summit GPU, n = 5123, ∆x = 0.78 m, ∆t = 6.25e-2s, Ω = [400 m × 400 m × 400 m]
NekRS AMR-Wind

node gpu n/gpu vi pi Ti tstep Peff rt vi pi Ti tstep Peff rt
4 24 5.5924e+06 2 1.81 1 2.44e-01 100 3.90 2 2 2 3.19e-01 100 5.10
8 48 2.7962e+06 2 1.82 1 1.39e-01 87 2.22 2 2 2 2.37e-01 67 3.80
11 66 2.0336e+06 2 1.85 1 1.11e-01 79 1.78 2 2 2 1.79e-01 64 2.87
16 96 1.3981e+06 2 1.90 1 8.66e-02 70 1.38 2 2 2 1.75e-01 45 2.80
24 144 9.3207e+05 2 2.00 1 6.87e-02 59 1.09 2 2 2 1.60e-01 33 2.56
32 192 6.9905e+05 2 2.00 1 6.77e-02 45 1.08 2 2 2 1.46e-01 27 2.34
64 384 3.4953e+05 2 2.00 1 4.40e-02 34 0.70 2 2 2 1.43e-01 13 2.30
128 768 1.7476e+05 2 2.00 1 4.02e-02 18 0.64 2 2 2 1.28e-01 7.7 2.05
256 1536 8.7381e+04 2 2.00 1 3.60e-02 10 0.57 2 2 2 1.41e-01 3.5 2.26

Strong-Scaling on Summit GPU, n = 10243, ∆x = 0.39 m, ∆t = 3.125e-2s, Ω = [400 m × 400 m × 400 m]
NekRS AMR-Wind

node gpu n/gpu vi pi Ti tstep Peff rt vi pi Ti tstep Peff rt
32 192 5.5924e+06 1 1.4 1 2.34e-01 100 7.50 2 2 2 0.369 100 11.82
40 240 4.4739e+06 1 1.3 1 2.04e-01 91 6.54 2 2 2 0.402 73 12.86
50 300 3.5791e+06 1 1.4 1 1.72e-01 87 5.50 2 2 2 0.288 82 9.21
70 420 2.5565e+06 1 1.4 1 1.27e-01 84 4.06 2 2 2 0.303 56 9.72
80 480 2.2370e+06 1 1.3 1 1.15e-01 81 3.68 2 2 2 0.301 49 9.65
86 512 2.0972e+06 - - - 2 2 2 0.206 67 6.60
90 540 1.9884e+06 1 1.3 1 1.08e-01 76 3.47 2 2 2 0.217 60 6.95
100 600 1.7896e+06 1 1.3 1 9.57e-02 78 3.06 2 2 2 0.219 54 7.01

Strong-Scaling on Summit GPU, n = 20483, ∆x = 0.39 m, ∆t = 1.5625e-2s, Ω = [400 m × 400 m × 400 m]
NekRS AMR-Wind

node gpu n/gpu vi pi Ti tstep Peff rt vi pi Ti tstep Peff rt
256 1536 5.5924e+06 - - - 2 2 2 0.437 100 34.99
320 1920 4.4739e+06 1 1.16 1 2.10e-01 100 16.8 2 2 2 0.485 72 38.80
400 2400 3.5791e+06 1 1.20 1 1.80e-01 93 14.4 2 2 2 0.370 76 29.62
480 2880 2.9826e+06 1 1.22 1 1.54e-01 91 12.3 2 2 2 0.402 58 32.16
640 3840 2.2370e+06 1 1.25 1 1.28e-01 81 10.3 2 2 2 0.440 40 35.26
683 4096 2.0972e+06 - - - 2 2 2 0.321 51 25.69
800 4800 1.7896e+06 1 1.18 1 1.05e-01 80 8.4 2 2 2 0.390 36 31.23

Table 4: NekRS GPU vs. AMR-Wind GPU strong-scaling performance study.

The lower plots show parallel efficiency,

ηP :=
t0P0

tstepP
, (1)

where P0 is the smallest value of P that will hold the given problem and t0 is the tstep value corresponding
to P0.

We see that at the lower resolution of n = 5123, the performance of the two codes is within a factor of 2
of each other out to P = 78. From the efficiency figures we can see that both curves have dropped below
80% efficiency by that point, so a more realistic point of comparison would be at P = 66 given that users
would typically not run this relatively small case on P > 66. We note that P = 66 corresponds to n/P = 2M,
which is a typical strong-scaling limit for NekRS on current-generation GPU platforms.

The center column in Figure 6 replots the strong-scaling information with n/P as the independent variable.
Here we see a collapse of each code’s strong-scale data into a single curve, particularly for NekRS. The
efficiency plot, lower-center, clearly shows the n/P = 2M mark as the 80% parallel efficiency point for NekRS.
The AMR-Wind wall-time curves, upper center, are not as tightly grouped, particularly for the large problem
sizes on large processor counts. It is tempting to speculate that this increased cost is due to an increase in
iteration count, but Tables 4 and 5 show that is not the case, since each solver requires only two iterations
per timestep for each of the problems. An important feature of AMR-Wind is that it generally performs
better if P is a power of 2. At the critical point of n/P = 2M, NekRS is only a factor of 1.6 faster than
AMR-Wind for the n = 5123 case.

Figure 6, right, shows weak-scaling results for n/P = 2.2M and 4.4M. For the heavily loaded cases,
AMR-Wind is within a factor of 1.6 of NekRS, but this figure increases to roughly a factor of 2 for the 2.2M
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Weak-Scaling on Summit GPU, ∆x = 0.78 m, ∆t = 6.25e-2s
NekRS AMR-Wind

node gpu n n/gpu vi pi Ti tstep Peff rt vi pi Ti tstep Peff rt
5 30 5122× 512 4.4e+06 1 1.5 1 0.191 100 3.8 2 2 2 0.303 100 4.8
20 120 10242× 512 4.4e+06 1 1.7 1 0.200 95 4.0 2 2 2 0.326 93 5.2
80 480 20482× 512 4.4e+06 1 1.9 1 0.218 87 3.8 2 2 2 0.344 88 5.5
320 1920 40962× 512 4.4e+06 1 2.4 1 0.235 81 4.7 2 2 2 0.386 78 6.2

NekRS AMR-Wind
node gpu n n/gpu vi pi Ti tstep Peff rt vi pi Ti tstep Peff rt
10 60 5122× 512 2.2e+06 1 1.5 1 0.112 100 2.2 2 2 2 0.223 100 3.6
40 240 10242× 512 2.2e+06 1 1.7 1 0.118 95 2.4 2 2 2 0.231 96 3.7
160 960 20482× 512 2.2e+06 1 2.1 1 0.127 88 2.5 2 2 2 0.269 83 4.3
640 3840 40962× 512 2.2e+06 1 2.5 1 0.147 76 2.9 2 2 2 0.352 63 5.6

Table 5: NekRS GPU vs. AMR-Wind GPU weak-scaling performance study
with fixed mesh density and resolution per GPU.

points-per-GPU case. The weak-scale efficiency reaches 80% at around P = 2000 GPUs for all the cases save
the AMR-Wind case with n/P = 2.2M, which crosses the 80% mark at P ≈ 1100.

Tables 4 and 5 provide a detailed breakdown of several of the key metrics for the code performance,
including iteration counts (vi, pi, Ti, for the respective velocity, pressure, and temperature iterative solvers),
tstep, parallel efficiency (Peff), and the wall-time to physical-time ratio (rt). This last quantity is of particular
interest since it must be smaller than unity for weather modeling applications. We also note that P is denoted
by gpu in the tables. We see from Table 4 that, for a fixed value of n/P , rt effectively doubles with each
doubling of (linear) resolution. The reason for this increase is that the number of timesteps must also double
whenever the number of points in each direction is doubled (for fixed domain size). Throughout the table, we
see that roughly two iterations are required per timestep for each of the linear solvers, indicating that the
preconditioners are robust with respect to mesh size, although NekRS does show some increase in iteration
count in the weak-scale results.

We remark that AMR supports block-structured adaptive mesh refinement, which means that static grids
do not leverage one of its main features. It is nonetheless highly performant on this problem. Moreover,
AMR-Wind has a significant performance boost when the number of ranks is a power of 2, as seen in Table
4 for the n = 10243 case for P = 512 and in the n = 20483 case for P = 4096. In the former case, the
parallel efficiency jumps from 49% to 67% as P changes from 480 to 512. In the latter, it jumps from 40%
for P = 3840 to 51% for P = 4096. These performance gains derive from the block decompositions used in
AMR-Wind, which favor block sizes (and thus, processor counts) that are powers of 2.

We close with a scaling comparison of Summit and Crusher performance for NekRS in Figure 7. The
upper figures show standard strong scaling as a function of the number of ranks on the left (one GPU or GCD
per rank) and as a function of n/P on the right. The lower plots show the timing for the makef kernel (left),
which evaluates the nonlinear advection term and does not require communication, and for the coarse-grid
solve (right), which is communication dominated. The coarse-grid problem, which has roughly E degrees of
freedom (with E = 262144 in this case), is solved by using algebraic multigrid (hypre) on the host CPUs.
The performance for these two platforms is remarkably similar.

2.3 MFEM fused GPU solvers for the DG mass operator in Laghos

GPU solvers for the mass matrix are critical to the performance of application using explicit time integration.
The discontinuous Galerkin (DG) mass matrix with its block diagonal structure allows to solve small dense
linear systems local to each element instead of a global linear problem. Solving local small dense linear
systems avoids expensive MPI communications while also allowing to use either iterative or direct solvers
on GPU, or even computing an explicit inverse. This study implemented in MFEM and in the Laghos
mini-application shows that using any of the proposed local solver result in substantial solve time speedups on
GPU, from 10x to 100x, when compared to a global matrix-free conjugate gradient. The solvers considered in
thr study are the following:

• Global matrix-free conjugate gradient preconditioned with Jacobi (FCG): similar to the CEED
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Figure 7: NekRS GPU strong-scaling comparison on Crusher and Summit.

Bake-off problem BP1 but for discontinuous Galerkin mass operator with a Jacobi preconditioner.

• Local matrix-free fused conjugate gradient preconditioned with Jacobi: (LCG-Leg with
Legendre basis and LCG-Lob with Lobatto basis) contrary to the global conjugate gradient where each
step of the conjugate gradient algorithm (operator evaluation, dot product, axpy) is a different GPU
kernel; for the local conjugate gradient a single GPU kernel fuses all the steps of the algorithm into one
kernel. As a result, this approach uses a single kernel launch instead of hundreds of them in a global
conjugate gradient. Moreover, local problems are solved at the thread block level, allowing most of
the computation to happen in registers and shared memory, and do not require to use device memory
bandwidth.

• Direct solvers:

– Local dense LU factorization (LU): the dense diagonal blocks are assembled on GPU with
MFEM, and then a dense LU factorization implemented in MFEM is executed on device.

– Batched Cholesky factorization using cusparse (Chol): the dense diagonal blocks are
assembled on GPU with MFEM, and then a batched Cholesky factorization from NVIDIA’s
cusparse library is called.

– Explicit local inverse and batched product from cublas (Inv): the dense diagonal blocks
are assembled on the GPU with MFEM, and then explicit inverse are stored in place, and finally
batched dense product from cublas is called.

The fused GPU solver for the discontinuous Galerkin mass matrix has been integrated into the CEED
Laghos mini-application. A 3D triple point benchmark has been used to demonstrate the scaling on Lassen
and Crusher, with 524,288 elements, 505 million of total degrees of freedoms, 33 million thermodynamic (L2)
degrees of freedom, using kinematic order 4 and thermodynamic order 3. Table 6 shows the two orders of
magnitude speedup at order 4 that can be achieved.
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Figure 8: Comparison of the setup throughput for the different solvers.
The setup throughput is the same for all conjugate gradient based solvers, either
local or global; on the other hand direct solvers have a much higher cost. Direct
solvers should therefore be avoided in favor of conjugate gradient solvers when
the mass matrix changes over time.

Number of L2 DOFs Not-fused Fused Speedup
GPUs (Millions) Runtime(s) Runtime(s)

Lassen
32 33 6.350 0.055 120
512 33 3.323 0.018 180

Crusher
32 33 9.173 0.066 140
512 33 1.876 0.008 230

Table 6: Two orders of magnitude Laghos speedup reached at order 4 with the
fused GPU solver for the discontinuous Galerkin mass matrix.

2.4 CEED benchmarks with matrix instructions on AMD MI250X

During recent benchmarking we observed that the performance of our most heavily tuned CEED BK kernels
on the AMD MI250X saturates at 1.2TB/s, and sometimes at 1TB/s. This is considerably lower than
the theoretical peak of approximately 1.6TB/s. We also observed that the achieved peak throughput is
correlated with the device memory read:write ratio of the kernels. Quantifying this observation involved
creating additional simplified streaming tests for the streamParanumal benchmarking suite which allows us to
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Figure 9: Comparison of the total solve throughput for the different
solvers. The global conjugate gradient peak performance is around 20-30 MD-
OF/s, which is about two orders of magnitude slower than the best performing
solver. Local conjugate gradient solvers achieve good performance for the full
range of polynomial orders. Direct solvers constitute an interesting alternative,
especially explicit inverse for low orders.

test different read:write ratios. We will subsequently refer to the asymmetric streaming benchmark as “BS9”.
We created three native HIP kernel implementations for the BS9 kernel with different striding choices for

the read and writes. These kernels were compiled at runtime using the JIT facilities of the OCCA portability
library which was convenient for testing a wide range of read:write ratios. The most efficient kernel is shown
in Listing 1.

The throughputs achieved for BS9 by the three kernels on a single GCD of the AMD MI250X are shown
in Figure 10. There are two notable aspects of these results. First, there is considerable variation between the
performance of the three different kernels. Second, the best performing kernel (illustrated in Listing 1) shows
degradation of throughput as the read:write ratio increases. Whereas the throughput is nearly 1.4TB/s for a
read:write ratio of 1:1 it degrades to about 1.26TB/s for a read:write ratio of 8:1 which closely mirrors the
memory access ratio inherent to BK3 and BK5. Thus in general it is only reasonable to expect up to about
1.26TB/s for those benchmarks which is considerably lower than the theoretical memory throughput of the
AMD MI250X GPU.

Performance of CEED BK3 with matrix instruction acceleration on the AMD MI250X. In this
section we discuss our recent optimization campaign for the CEED BK3 kernel at high order on the AMD
MI250X.
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In prior CEED milestone reports we have presented results for AMD GPUs up to only polynomial degree
(N = 8). This is in part because users oftentimes find that the sweet spot for high-order finite elements is
typically around N = 7. However, it is also in part because there are several performance limiters intrinsic
to the AMD MI200 series core architecture that can make it difficult to achieve high throughput for higher
polynomial degrees.

In Figure 11 we show block diagrams for the NVIDIA GA100 streaming multiprocessor (SM) used in
the NVIDIA A100 GPU and the AMD CDNA2 compute unit (CU) used in the AMD MI250X. These two
architectures are quite similar apart from their L1 and shared memory cache sizes. The NVIDIA SM has
more shared scratch space than the AMD CU. Thus optimizations suitable for the NVIDIA GPU that rely
heavily on L1 and/or shared memory may not be as suitable for the AMD CU.

Listing 1: Listing for HIP implementation of the BS9 asymmetric streaming
kernel

// p_NblockSize is number of threads per thread -block

// p_Nreads is number of values to read and sum

// p_Nwrites is number of times to write sum out

// dfloat is the type of the values (double for this work)

extern "C" __global__ __launch_bounds__(p_blockSize)

void bs9_v2(const dlong N,

const dfloat* __restrict__ x,

dfloat* __restrict__ y){

int n = threadIdx.x + blockIdx.x*p_blockSize*p_Nreads;

dfloat res = 0;

#pragma unroll p_Nreads

for(int m=0;m<p_Nreads ;++m){

dlong id = n + m*p_blockSize;

if(id<p_Nreads*N){

res += x[id];

}

}

n = threadIdx.x + blockIdx.x*p_blockSize*p_Nwrites;

#pragma unroll p_Nwrites

for(int m=0;m<p_Nwrites ;++m){

dlong id = n + m*p_blockSize;

if(id<p_Nwrites*N){

y[id] = res;

}

}

}

In [34] we described how the 12 CEED BK3 tensor contractions can be efficiently handled with a mixture of
storage in registers and shared memory on NVIDIA GPUs. However, at high order this strategy is hampered
by the limited available shared memory on each AMD CU. To circumvent this limitation we developed new
kernels that reduce both the amount of shared memory used and the number of times the shared memory is
accessed. In order to reduce the pressure on the shared memory we developed kernels with 8 of the 12 tensor
contractions being performed by the matrix cores on each AMD CU.

The latest CDNA2 architecture includes two new intrinsic matrix instructions for FP64 wavefront based
matrix-matrix multiplication, namely V MFMA F64 16x16x4f64 and V MFMA F64 4x4x4f64. The former multiples
a 16x4 matrix with a 4x16 matrix, and the latter performs four separate multiplications of 4×4 matrices with
4×4 matrices. The first variant delivers twice the regular vector instruction throughput, while the second
variant achieves at most the same throughput as regular vector instructions. We have found for the BK3
operations that the V MFMA F64 4x4x4f64 performs better in experiments despite its lower nominal throughput
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Figure 10: Throughput for three different implementations of the BS9 asym-
metric streaming benchmark executing on a single GCD of an AMD MI250X
using ROCm 5.2.0.
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 AMD MI250X:  
  

•GPU featured in Frontier. 
•Each compute unit (CU) has:  

•  Scalar registers (SGPR)  
• Vector registers (VGPR) 
• Matrix registers (AGPR) 

• Multiple vector/matrix units. 

• The matrix-cores: 

• Specialized FP64 matrix-matrix multiplication instructions: 
a. mfma     4x4x4 (single rate, batched x4). 
b. mfma 16x16x4 (double rate). 

• HIP mfma programming to be discussed in break out. 

• We are mostly interested in using the matrix-core registers  
 & to reduce shared memory traffic. 

NVIDIA (A100):  

•  Streaming multiprocessor (SM) abstractly quite similar to the AMD CU. 
• More generous cache enable different choices in kernel design. 
• CUDA wmma programming interface.

Figure 11: Comparison of the NVIDIA GA100 streaming multiprocessor and
AMD MI200 series CDNA2 core architectures.

which we attribute to allocating less matrix values to each thread.
In Table 7 we show the best obtained device memory throughput and floating point throughput for BK3

in double precision (FP64) and single precision (FP32) over a range of polynomial degrees (N) 1. In our
implementation we pad out the data and operator matrices in size to multiples of 4 to match the dimension
restrictions of the MFMA instructions. This means that we are performing extraneous arithmetic operations
when the node count or quadrature node count are not multiples of 4 in each direction. However we do not
include these extraneous operations in the floating point throughputs reported in Table 7.

For the FP64 results in Table 7 we see that the MFMA-based kernel implementations prove to be more
efficient than the kernels that only use vector instructions. In all cases the FP64 kernel memory throughput
is close to or exceeds 1TB/s. The FP32 matrix instructions only prove to be more efficient than vector
instructions at polynomial degrees N ≥ 12. Although the vector based kernels degrade in performance as
N increases, the matrix instruction version gets close to 1TB/s throughput at N = 14. The improvements
at N = 14 can in part be attributed to the reasonable match of the tensor contraction sizes with the 4×4
MFMA instructions.

1For these calculations we used the FP64 ( builtin amdgcn mfma f64 4x4x4f64) regardless of whether we are performing
calculations on FP32 or FP64 data.
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FP64 FP32
N HBM (GB/s) GFLOPS HBM (GB/s) GFLOPS
1 982 1144 996 2271
2 951 1421 937 2724
3 1013 1840 867 3051
4 1026 2192 901 3720
5 988 2426 847 4012
6 1037 2879 992 5295
7 958 2963 961 5708
8 974 3321 924 6046
9 1040 3663 908 6489
10 1033 4205 864 6697
11 1000 4362 830 6927
12 965 4498 791 7078
13 1086 5481 913 8719
14 1018 5716 948 9628

Table 7: Best obtained DEVICE memory throughputs and floating point through-
puts for BK3 in double precision (FP64) and single precision (FP32) over a
range of polynomial degrees (N). Calculations performed on a single GCD of
an AMD MI250X GPU using HIP from ROCm 5.2.0. Results shown in red
were obtained using a combination of regular vector and matrix instructions
builtin amdgcn mfma f64 4x4x4f64 whereas results shown in black were ob-

tained using only regular vector instructions. N + 2 quadrature points were used
in each direction for these experiments.

2.5 Performance tuning for the non-tensor MAGMA backend on AMD GPUs

The non-tensor MAGMA backend performs basis actions using standard matrix-matrix multiplication
(GEMM). The matrix dimensions are often very skewed, as shown in Figure 12. The output matrix is often
very wide, while all the other dimensions are relatively small. The shape shown in Figure 12 makes it a
candidate for batching, e.g. by subdividing the output matrix across the columns and launching independent
multiplications through batch GEMM. The decision to use batch GEMM depends on many parameters, such
as the compute precision, the matrix dimensions, the GPU architecture, and the subdividing dimension nb
(shown in Figure 12). Another decision to be taken is whether to choose the vendor routines (i.e. hipblas) or
MAGMA’s own kernels. The selection of the best performing basis action is a challenging task, and may be
difficult to maintain on the long term.

The MAGMA team has successfully integrated a lightweight tuning layer, called the GEMM selector, for
choosing the best performing kernel given a set of certain dimensions. The selector relies on two components,
(1) tuning data and (2) a decision maker. The tuning data are generated offline using benchmark sweeps
for all the available GEMM routines in cuBLAS, hipBLAS, and MAGMA, using the typical dimensions
often found in libCEED’s bake-off problems. Such data are stored in lookup tables, which represent the
knowledge database for the selector, as it recommends the best candidate kernel for a given dimension. A
lookup table is stored for every GPU architecture. The decision maker searches the corresponding lookup
table and tries to find the closest match for the dimensions given at run time. Figure 13 shows the GEMM
selector recommendations for the MI250X using double precision. The figure shows that there is no clear
winner for all sizes, which proves the value of having a robust tuning layer for the non-tensor backend.

Figures 14 and 15 show the impact of integrating the GEMM selector into the non-tensor backend on the
3D diffusion problem. Performance gains are observed in most cases against the original backend, which had
hard-coded tuning for the V100 GPU only. The robustness of the GEMM selector on the long term can be
maintained by keeping the tuning data up to date. This only requires updating/adding lookup tables, with
very minimal changes in the backend itself.
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Figure 13: Colormap of the DGEMM selector for the MI250X

2.6 Solid mechanics with matrix-free p-multigrid on Lassen, Summit, Perlmutter and Crusher

In this section we present a study om the use high order finite elements on coarse meshes on real-world
structural mechanics problems that have numerous reentrant corners and Dirichlet (fixed/clamped) to
Neumann (free or applied traction) boundary condition transitions which causes stress singularities. Consider
a unit cube with radius 0.3 cylindrical hole, fixed to a rigid boundary on one end and with applied tangential
traction on the other. Figure 16 shows the deformed state and strain energy function for a Neo-Hookean
material with Young’s modulus 2.4 and Poisson ratio 0.4, and applied traction of 0.2. We perform a
convergence study using linear and high-order geometry meshes produced by Gmsh [19], which can generate
arbitrary order curved meshes. Figure 17 shows the relative error in predicted total strain energy Ψ (reference
value computed on a highly-resolved mesh) versus DoFs for h and p refinement of the 36-element (3 layers
deep) mesh evident in Figure 16 (mesh A) as well as a more resolved mesh B. We observe that p refinement of
very coarse meshes is the most efficient path to accuracy.

Next, we show that solve costs decrease with increasing p using matrix-free p-multigrid and thus Figure 17
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Figure 14: Performance of the 3D diffusion problem using MAGMA’s non-tensor
backend on the MI100 GPU.
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Figure 15: Performance of the 3D diffusion problem using MAGMA’s non-tensor
backend on the MI250X GPU

is in fact generous to the low-order methods. As in [22], we continue to consider the Schwarz Primitive surface
extrusion under load, which exhibits interesting geometric and material nonlinearities. Using a 24-element 2D
manifold mesh of a single unit cell embedded in 3D, replicated to the prescribed extent in each embedding
dimension. This mesh is partitioned and distributed using ParMETIS, then refined with new nodes projected
to the closest point on the implicit surface

cos 2πx+ cos 2πy + cos 2πz = 0.

The resulting manifold mesh is extruded normal to this surface to the prescribed thickness and number of
layers. Figure 18 shows such a model loaded to about 12% strain on an extent (8, 8, 8) model with about 11.8
million DoF (MDoF).

Results are computed on GPU-based environments on LLNL’s Lassen, OLCF’s Summit and Crusher,
and NERSC’s Perlmutter. Lassen and Summit are both IBM POWER9 machines with 4 and 6 NVIDIA
V100-SXM2 16 GiB GPUs per node, respectively. This study used the open source packages PETSc-3.17
[4], hypre-2.24 [14, 3], Kokkos-3.6 [36], ParMETIS 4.0.3 [20], libCEED-0.10.1 [5], and Ratel-0.1 [6]. The
numerical experiments “preload” by doing a crude tolerance solve that is discarded before starting timers in
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Figure 16: Visualization of the deformed state and strain energy singularities
on mesh A of Figure 17, refined 3 times by splitting each hexahedron in 8 without
snapping to geometry, and solved using Q2 finite elements. There are physical
singularities on the back surface (e.g., top-right corner) and non-physical singular-
ities at the weak reentrant corners of the hole (which do not exist in the smooth
model with exact cylinder).

Figure 17: Accuracy study showing relative error in total strain energy Ψ versus
DoFs for the bending experiment Figure 16 under both h refinement (same shape)
and p refinement (same color) with low and high order geometry. The Pareto
front is toward the lower left and we observe that h refinement always moves
away from optimality. The slope of h refinement is the same for all meshes and
solution orders. p refinement is very efficient so long as the geometry is at least
quadratic, but causes errors to increase when p refining on linear geometry due
to resolution of the non-physical singularities.

order to provide consistent timing representative of longer-running simulations. For more accurate profiling
of individual events, the profiled runs include some unnecessary synchronization with the GPU, introducing a
slight latency penalty to the smallest model sizes.

We compare efficiency of different machines and different parallel scale using the model from Figure 18
with (nondimensionalized) parameters thickness 0.2, Young’s modulus 1, and Poisson ratio 0.3, fixed to the
left wall with a compressive traction of 0.02 applied from the right. This model requires 5 to 7 Newton
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Figure 18: Extruded Schwarz Primitive surface under 12% compressive strain,
colored by von Mises stress. The left wall is fixed and a compressive force is
applied to the facing surfaces on the right. The simulation used 2 refinements, 2
layers, thickness 0.2, and Q2 elements.

Figure 19: Efficiency per Newton iteration versus time for Q2 (left) and Q3

(right) finite elements using matrix-free Newton-Krylov with p-MG precondi-
tioning and BoomerAMG coarse solve. Problem sizes (in MDoF) are annotated
for the minimum and maximum sizes for each host and number of nodes com-
bination. The impact of latency is ever-present, with memory capacity limiting
the right end of each curve. Ideal weak scaling is evident for Q3 on Perlmutter
for Newton step time above 1.8 s where the 1-node and 8-node curves coincide,
while communication latency leads to degradation at the smallest problem sizes
(2 MDoF/GPU with time around 1 s).

iterations across the range of resolutions, with each linear solve needing 9 to 25 preconditioned CG iterations
to converge to a relative tolerance of 10−3 in the natural norm, with CG condition number estimates from
9.5 to 61 (mostly less than 15 iterations and condition numbers less than 20; depending on the Newton step).

We sweep through a range of Primitive model extents up to 203 per node of Crusher (184 MDoF), solve
each model, and plot efficiency versus time per Newton iteration for Q2 and Q3 elements in Figure 19. The
Q2 model is as depicted in Figure 18 with 2 refinements and 2 extruded layers, while the Q3 model uses only
one extruded layer to achieve somewhat better accuracy. In such plots, perfect weak scaling would have the
1-node and 8-node curves on top of each other, with strong scaling limits visible in the minimum time at
which acceptable efficiency can be achieved. This human-centric figure is meant to assist the analyst with
cloud or HPC access in choosing an efficiency-versus-time tradeoff. For example, one may look at the right
portion Figure 19 and decide that under 2 s per Newton iteration (about 10 s) for the total nonlinear solve)
delivers an acceptable efficiency time tradeoff. Examining the Perlmutter curve with about 3 MDoF/s/GPU
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at 2 s, the target problem would be scaled to about 6 MDoF/GPU. The 1-node and 8-node Perlmutter curves
lie on top of each other here, indicating that one can solve a 24 MDoF problem on one node (4 GPUs) with
the same efficiency as a 192 MDoF problem on 8 nodes.

Note that AMG requires a deeper V-cycle for the larger problem size, but this latency impact is hidden at
the 2 s solve time with Q3 elements. Compare with left of Figure 19, in which there is a slight efficiency
penalty to the weak scaling since a greater fraction of the solve time is spent in AMG when using Q2 elements.
The solve can be made somewhat faster by using more GPUs (with some drop in efficiency) or more efficient
by using fewer GPUs (while needing to wait longer). Different architectures can readily be compared in this
metric by normalizing the efficiency axis by energy (DoF/joule) or monetary (DoF/dollar) cost.

Figure 20: Linear solve efficiency spectrum for Q2 (left) and Q3 (right)
finite elements using matrix-free Newton-Krylov with p-MG preconditioning and
BoomerAMG coarse solve. The times and efficiencies are per Newton iteration.
Problem sizes (in MDoF) are annotated for the minimum and maximum sizes for
each host and number of nodes combination.

Figure 21: Preconditioner setup efficiency spectrum for Q2 finite elements using
matrix-free Newton-Krylov with p-MG preconditioning and BoomerAMG coarse
solve. The times and efficiencies are per Newton iteration. Problem sizes (in
MDoF) are annotated for the minimum and maximum sizes for each host and
number of nodes combination.

The linear solve in Figure 20 is communication-intensive since each preconditioner application goes through
a V-cycle (with an increasing number of levels as the model gets larger). Figure 21 considers preconditioner
setup, which consists of algebraic multigrid analysis and Galerkin products as well as a few Krylov iterations
to calibrate the smoothers. Assembly of the coarse Jacobian (SNESJacobianEval) exhibits nearly perfect
problem-size independence at about 20-25 MDoF/s/GPU (with Q2 elements) on Crusher and Perlmutter,
and is thus always less than 20% overhead. The relative cost of Jacobian assembly and preconditioner setup
both decrease when going to Q3 elements because the coarse problem is a smaller fraction of the fine problem
size.
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2.7 Mixed-precision libCEED kernels and compiler insights for AMD MI250X

In CEED-MS38, Section 5.4, we compared single- and mixed-precision performance to that of double precision
for libCEED operators on NVIDIA (V100) and AMD (MI100) GPUs [22]. Those initial MI100 results were
surprising, particularly for the MAGMA backend (Figure 62). Because the MAGMA backend uses separate
kernels for the suboperations in libCEED’s operator application sequence, ETBTDBE , the mixed-precision
mode used was what we termed “low-high”, meaning the input/output vectors to each kernel are in the
lower precision (single), while all computation is performed in higher precision (double). All intermediate
data storage — E- and Q-Vectors in libCEED’s terminology — are thus in single precision, which lowers
the total data movement to and from main memory. However, as seen in the previous report, there were
several curiosities: first, that the all-float performance would often jump above 2× speedup over double, and
second, that the mixed-precision case enjoyed almost no speedup at all, particularly for higher orders of basis
functions, despite these kernels being memory bound. Both of these trends also did not match the CUDA
results for an NVIDIA V100 GPU.

Recent developments in the MAGMA backend and further investigations into the performance of these
kernels have yielded some answers to these questions. Most importantly from a performance point of view,
the MAGMA backend was updated to use runtime compilation via nvrtc/hiprtc for its tensor basis kernels.
This was not done with performance in mind, but rather more general code maintainability benefits: it
makes the MAGMA backend more similar in structure to other GPU backends, it adds more coverage to
the parameter ranges available through the MAGMA backend, and it greatly reduces the time to compile
the library itself. However, we discovered that it also seemed to improve the performance of the MAGMA
backend on AMD GPUs, both MI100 and MI250X. We found that a difference in flag handling between hipcc

and nvcc appeared to be responsible: the same optimization flag was used for both host and device code with
hipcc, which was not the case when building the CUDA version of the MAGMA backend with nvcc. This
meant the default libCEED CPU optimization flag – which was set to O – was being used for ahead-of-time
HIP kernel compilation. The runtime-compiled kernels, on the other hand, were using the hipcc default of O3

in the absence of setting a specific level. Because nvcc doesn’t propagate the optimization flag through to
device code, this disparity between ahead-of-time and runtime compilation of the kernels wasn’t seen in the
CUDA MAGMA backend.
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Figure 22: Comparison of 3D diffusion operators compiled with O3 versus O1

optimization levels for the magma-det backend, in double precision (left) and
single precision (right). Results obtained with ROCm 5.2 on one GCD of an
AMD MI250X GPU.

In Figure 22, we show the speedup in the average time to apply the three-dimensional diffusion operator
when using O3 versus O1. All results here were obtained via runtime compilation, but the O1 results are a
good proxy for older, ahead-of-time-compiled MAGMA basis kernels used in previous reports, as explained
above. For these tests, the operator was applied 2000 times, followed by one device synchronization call
to ensure all kernels had completed, then the total time was divided by the number of applications. The
speedup is large – often between 2× and 4× for O3.

Now if we reconsider the mixed-precision MI100 experiments from CEED-MS38 on the MI250X, we see
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that using O1 results in similar (unexpected) trends of poor mixed-precision performance despite excellent
single-precision performance, relative to double. See the left side of Figure 23; compare with the right side
of Figure 62 in CEED-MS38. However, on the right side of Figure 23, we see the same tests with O3 (the
default flag for hiprtc). From Figure 22 we know that the double and float operators in the right plots are
faster than their counterparts on the left, but we also see that for second and fourth order basis functions,
the “low-high” mixed-precision case retains most of the speedup of all-float, as we would hope for memory
bound kernels. The all-float cases also no longer spike above 2× speedup. When we move to eighth order
basis functions, however, a new result appears: the mixed-precision case is actually better than all-float.
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Figure 23: Comparison of mixed-precision and single-precision performance
versus baseline double precision for the HIP version of the magma-det backend
using runtime compilation via hiprtc, with either O1 or O3 optimization levels.
Tensor-product basis functions of order 2, 4, and 8 are considered for the 3D
diffusion (Poisson) operator. O1 performance approximates previous tests of the
MAGMA backend for HIP, which did not use runtime compilation; see MS38
(Figure 62). Results obtained with ROCm 5.2 on one GCD of an AMD MI250X
GPU.

Through investigations with rocprof and comparing the output of the hiprtc compiler (as reported by
using the --save-temps flag), we can perhaps explain these results. In Table 8, we collect some metrics and
information from the compiler output for a sample computational kernel: the non-transpose gradient basis
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kernel, used in the benchmark results shown above. The top portion of the table contains four metrics: the
number of scalar registers used by the kernel, the number of vector registers, the private scratch memory
usage per thread (in bytes), and the occupancy. The key points for comparison between the optimization
levels are that O3 increases register usage, which sometimes drops the occupancy, but it also reduces the
scratch memory usage to zero. The scratch memory usage seems to be important, as demonstrated in Figure
24, where we see that the O1 kernels (left) sometimes report less than 50% total read/write of double precision,
while the mixed-precision kernels are often closer to double – not the goal of the “low-high” scheme. For the
O3 kernels (right), that is not the case. The total memory movement for each precision is also reduced with O3.
(Note that Figure 24 combines all kernels in the operator, not just the non-transpose gradient basis kernel
highlighted in Table 8.) Along with loop unrolling done with O3 but not O1, the lowered memory movement is
a likely cause of improved performance for these memory-bound kernels.

p = 2 p = 8
double lo-hi float double lo-hi float
O1 / O3 O1 / O3 O1 / O3 O1 / O3 O1 / O3 O1 / O3

Num scalar regs 22 / 16 22 / 16 24 / 16 22 / 16 22 / 16 24 / 16
kernel Num vector regs 16 / 45 16 / 45 18 / 32 18 / 98 18 / 98 18 / 70
info Scratch mem 80 / 0 80 / 0 48 / 0 176 / 0 176 / 0 112 / 0

Occupancy 8 / 8 8 / 8 8 / 8 8 /4 8 / 4 8 / 7

num. of Packed FP32 flops† – – 0 / 42 – – 0 / 315
instructions* v mov b32 33 / 23 33 / 23 53 / 91 34 / 63 34 / 63 55 / 545

Table 8: Selected HIP compiler output information for magma gradn 3d kernel

– 3D non-transpose gradient basis kernel from the MAGMA backend.
*Instructions as counted by number of kernel ISA lines where a relevant instruction
was found; any branching/jumps ignored.
†Combined total of v pk add f32, v pk mul f32, and v pk fma f32.

Next, we turn our attention to the loss of performance for float with p = 8. The second part of Table 8
contains information on the number of times certain instructions appear in the generated ISA of the kernel:
first, the packed float computational instructions, only available on MI200; and second, move instructions.
With O1, the compiler does not emit any packed FLOP instructions; with O3, it does, but it also increases
move instructions, as it needs to move data to align it properly for packed instruction use. Here we also see
the difference between p = 2 and p = 8: not even 2x more move instructions for O3 versus O1 with p = 2, but
nearly 10× for p = 8! (This analysis does ignore any possible branches or jumps in the assembly code, and
merely counts the number of lines containing the instructions.) It is likely that in this case, the extra move
instructions required to use the packed FLOP instructions render any computational benefits moot, which
is why the mixed-precision case – which cannot even try to use packed instructions as all computation is
happening in double – outperforms all-float for this case.

3. CEED PERFORMANCE IMPROVEMENTS FOR AURORA

3.1 Extending the MAGMA portability with OneAPI

The MAGMA library has been originally designed and implemented for heterogeneous systems that use
NVIDIA GPUs. Support has been extended to OpenCL, Intel Xeon Phi, and more recently to AMD GPUs
by translating CUDA code to HIP. To provide support for Aurora, and Intel GPUs in general, we started to
port MAGMA to SYCL/DPC++. DPC++ is the direct programming language of the oneAPI programming
model interface, providing portability to all supported hardware, including scalar, vector, spatial, and matrix
architectures such as CPUs, GPUs, Field-Programmable Gate Arrays (FPGAs), and other accelerators. Thus,
of interest for this period was to evaluate the ease of portability, as well as the functional and performance
portability of a large numerical library like MAGMA. To do the evaluation we set different tests for multicore
CPUs, NVIDIA GPUs, and Intel GPUs.
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Figure 24: Comparison of data read/write, in bytes, as reported by rocprof

for double, single, and mixed-precision 3D diffusion operator applications in the
magma-det backend for tensor product basis functions. The profiled cases use the
same number of total DOF in the solution (4,276,737), for second and eighth
order basis functions. Labels for mixed and float indicate the fraction of the
double-precision value. Values are averaged over 4 operator applications.

The GEMM design and implementation are of fundamental importance in HPC as many scientific
computing applications, including the main kernels in CEED, are designed in terms of GEMM operations.
GEMM is expected to run close to machine peak of the underlying hardware so that applications using
GEMMs derive their high-performance and performance portability across different hardware from highly
efficient GEMM implementations. This is the reason that we concentrated on the GEMM kernel for this
evaluation. Performance portable GEMM implementations however are very challenging to develop – even for
just one specific architecture, let alone having a single code to be performance-portable across architectures.
Still, our goal is to evaluate exactly that, i.e., to what extent can a single DPC++ GEMM implementation
be performance-portable.

The DPC++ Compatibility Tool (DPCT) in Intel’s oneAPI was used successfully for an initial port of
selected MAGMA kernels to DPC++, followed by manual changes. In particular, the DPCT tool was used
to recursively migrate the SGEMM files and headers (about 50 files, including all magma header files and
GEMM sources). A motivation to choose FP32 is that FP32 arithmetic is often more than 2× faster than
FP64 for many GPUs and many applications, including machine learning and deep neural networks, are
currently aiming to leverage this performance boost by reducing the accuracy (even to FP16) and possibly
regaining it with mixed-precision calculations where the bulk of the computation is in reduced FP16 or FP32
precision.

Figure 25, Left shows the performance of the migrated DPC++(MAGMA) SGEMM algorithm on an
AMD multicore CPU system. It outperforms significantly the OpenMP C++(OpenMP) implementation,
and even the MKL implementation [18]. This result is significant as it shows that an algorithm designed
for NVIDIA GPUs can be very efficient for multicore CPUs as well. Note that the DPC++(MAGMA)
implementation outperforms even MKL. This means parallelization, blocking for reduced communication,
and vectorization have been all efficiently achieved. Thus, since a fast multicore GEMM is very challenging
to develop, this is one illustration of both functional and performance portability of MAGMA GEMM, and
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Figure 25: Left: Performance of MAGMA’s SGEMM translated to DPC++
and benchmarked on multicore AMD EPYC 7742 64-Core 2.25 GHZ CPU. Right:
Performance of MAGMA’s SGEMM translated to DPC++ and benchmarked on
NVIDIA GeForce RTX 3060 GPU.

arguably the entire MAGMA because of the GEMM importance, to multicore CPUs using the Intel’s oneAPI
programming model and toolkit. Furthermore, MAGMA never had a port to just multicore CPUs, and this
result shows that the oneAPI port as being developed is a feasible solution to easily provide this functionality
in a performance portable way.

Figure 25, Right shows the performance of the migrated MAGMA DPC++(MAGMA) code, originally
tuned for NVIDIA GPUs, to an NVIDIA GPU system. The migrated code retained the performance of
the CUDA implementation. This is significant result as it illustrates that DPC++ is expressive enough for
parallel algorithms that have to map and run well on NVIDIA GPUs, as it matches in performance CUDA
that is designed for NVIDIA GPUs. Also, it shows that the Intel oneAPI compiler is very good in generating
highly optimized code for NVIDIA GPUs. This is the ideal outcome for a new language, its compiler, and a
translation tool – the tool to translate a highly-optimized code to a new language, compile the new code, and
achieve the same performance as the original code on hardware for which the original code had been tuned.

Combined with the results for multicore CPUs, we conclude that after a full translation of MAGMA is
complete, the same code can be used for both functional and performance portability to NVIDIA GPUs,
multicore CPUs, and Intel GPUs.
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Figure 26: Left: Performance MAGMA SGEMM versions translated to
DPC++ and benchmarked on Intel UHD Graphics P630 GPU; Right:
MAGMA’s templated GEMM producing various versions (e.g., MAGMA ker2
and MAGMA ker11) through autotuning nine templated parameters.

Initial porting results, e.g., for the migrated DPC++(MAGMA) code, were very poor for Intel GPUs.
The MAGMA DPC++ SGEMM algorithm never exceeded two GFlop/s in performance for the Intel UHD
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Figure 27: Relative performance of NekRS benchmarks with problem size of
8196 (Averaged throughput, higher is better).

Graphics P630 GPU. This indicated that the parameters originally used in the MAGMA SGEMM algorithm,
needed to be updated to accommodate for the Intel GPU architecture. Multiple constant sets were tested
next, to discover ker2 and ker11, which increased the performance to more than ten times that of the standard
SGEMM algorithm, as shown in Figure 26, Left. Optimal algorithm parameters are yet to be determined.
Without specific details about the Intel GPU architecture, several hundred parameter combinations must be
tested through trial and error (following an autotuning approach). The MAGMA GEMM algorithm is shown
in Figure 26, Right. This algorithm is used for GEMM of any type, including single precision. There are nine
important constants that tune the algorithm to a hardware architecture.

Ideally, more hardware configurations will be of interest to test, tune for, and use, and we have ran on
some, including high-end Intel GPUs in the early-access precursors of the Aurora system, to find that the
conclusions and main massage of this work remain the same [18].

3.2 NekRS on Ponte Vecchio with Intel OneAPI DPC++ implementation

NekRS has been ported on to Intel’s Ponte Vecchio (PVC) GPU system by Kris Rowe (ALCF) in collaboration
with Intel staff. In particular, the performance gains in timing results for NekRS benchmarks on PVC
are featured in this article (https://www.servethehome.com/intel-ponte-vecchio-xmx-with-oneapi-detailed-at-hc34/)
that are shown in Figure 27. The results demonstrate the relative performance of NekRS’s benchmarks using
the problem size of 8196 on a PVC B4 node with averaged gains of 1.5× for axhelm (FP64), 1.3× for axhelm

(FP32), 1.7× for FDM (FP32), and 1.4× for advSub (FP64).
The team is continuing to conduct performance analysis both at the kernel level and for the full code

with variation of polynomial orders, element counts and environment settings (MPI ranks, number of tiles).
The Intel and ANL groups have been holding bi-weekly meetings with the CEED NekRS team to investigate
overall performance concerns in detail. The overall results are very promising for the port of NekRS to
Aurora.

4. ADDITIONAL TOPICS

This section covers additional research performed by the CEED team on topics such as mesh optimization,
solvers, implicit fluid simulations, performance tuning on NVIDIA GPUs and exascale simulation workflow.
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Figure 28: Kershaw meshes: (left) Initial mesh, (right) Mesh deformed using
Kershaw deformation parameters εy = εz = 0.3.

4.1 Partial assembly for high-order mesh optimization in MFEM

The high-order mesh adaptivity framework in MFEM is based on the Target-Matrix Optimization Paradigm
(TMOP) [12]. This framework relies on node movement for minimizing a non-linear objective function
that depends on the current and target (desired) geometric parameters: aspect-ratio, size, skew, and
orientation of each element in the mesh. Prior work has demonstrated the effectiveness of this framework for
adapting high-order meshes to the partial differential equation of interest and improving the accuracy and
computational cost of the solution [11, 13]. The TMOP-based objective function is minimized in MFEM
using the Newton’s method, which requires the gradient and Hessian associated with the objective function.
Original implementation in MFEM relied on a fully assembled Hessian operator for each Newton iteration,
and numerical experiments demonstrate that the construction and action of this Hessian operator accounts
for majority of the time in mesh adaptivity on CPUs.

Recently, we have improved the mesh optimization algorithms in MFEM to use partial-assembly for the
Hessian operator as well as the gradient of the objective function. The assembly of the global sparse matrix
(for the Hessian) and vector (for the gradient) has been replaced with pre-computation and storage of data at
quadrature points in each element, which is used to perform operator action element-by-element using tensor
contractions. We have also developed the capability to perform Jacobi preconditioning for the Hessian, as the
diagonal of the operator can be computed through tensor contractions without having the global matrix.

To assess the impact of partial assembly on mesh optimization, we use a mesh deformed using the Kershaw
transformation [21] and compare the total time it takes to optimize the mesh on CPUs and GPUs. Figure 28
shows the original 24 × 24 × 24 mesh and the mesh deformed using Kershaw parameters (εy = εz = 0.3).
Appendix A of [7] provides the source code used to implement this transformation.

The numerical experiments discussed here were done on Lassen, a Livermore Computing supercomputer,
that has IBM Power9 CPUs (792 nodes with 44 CPU cores per node) and NVIDIA V100 GPUs (4 per
node). All reported computations utilize a single machine node. The CPU runs use 36 CPU cores, while the
GPU runs utilize 4 CPU cores with 1 GPU per core. Table 9 compares the unique degrees of freedom and
total quadrature points per core for optimizing meshes of different polynomial orders (p = 1, . . . , 4). The
quadrature order is uniformly set to 8, and a shape metric is used to improve the skewness and aspect-ratio
of elements in the mesh. In each case, TMOP-based optimization improves the high-order deformed meshes
back to the original undeformed state. The reader is referred to [7] for additional details of the problem
setup, which we skip here for brevity. Table 9 also shows that the improvements made in the current work
lead to a 30-40× speed up on GPUs in comparison to CPUs.

We also provide throughput results that demonstrate how well the proposed algorithms utilize the machine
resources as the problem size increases. The plots on Figure 29 show the throughput for the action of the
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Unique Degrees of Freedom
p = 1 p = 2 p = 3 p = 4
46,875 352,947 1,167,051 2,738,019

Quadrature points per core (E(Q+1)d

P )
CPU 279,936
GPU 2,519,424

Time to solution (sec)
p = 1 p = 2 p = 3 p = 4

CPU 18.8 43.0 129.6 224.3
GPU 0.4 1.0 3.9 7.5

Speedup (GPU vs CPU)
47× 43× 33× 30×

(a) (b)

Table 9: For meshes of different orders (p), we compare (a) unique degrees of
freedom and total quadrature points per core and (b) total time to solution.

Hessian operator, which is the most cost-intensive kernel in mesh optimization. The throughput is provided
in terms of billions of degrees of freedom processed per second vs. the problem size in the CPU and GPU
cases. Such plots are useful in comparing the performance of different orders and problem size in both the
weak and scale limits, see e.g. [23]. For example, higher throughput means faster run time, and from Figure
29 we can see that on both platforms higher orders perform better, but the difference is much more significant
on GPUs. Furthermore, while CPU performance is relatively flat across problem sizes, the GPU requires
significant number of unknowns (in the millions of degrees of freedom) to achieve the best results.

Figure 30 shows the throughput for the complete TMOP algorithm for a single GPU. We observe that
the higher orders achieve better computational intensity, especially for larger problems. Every data point in
Figures 29 and 30 is obtained by timing the computation of a single Newton iteration on the initial deformed
mesh. The number of quadrature points per element is set to 33, 43, 53, and 63 for mesh orders 1, 2, 3, and 4,
respectively.

a. 40 IBM Power9 cores b. 4 NVIDIA Tesla V100-SXM2

Figure 29: Throughput comparison - action of the second derivative operator.
Single Lassen node throughput (in GDOF/s, i.e. billions of degrees of freedom
per second) of (a) 40 IBM Power9 CPU cores and (b) 4 NVIDIA Tesla V100-SXM
GPU.

4.2 Solver advances for high-order discretizations

We have made progress in improving solution times for spectral element and high-order FEM Poisson solves
using p-multigrid (pMG) with Chebyshev-accelerated Schwarz smoothing. In a recent article, Lottes [26]
demonstrated the benefits of using 4th-kind Chebyshev polynomials for multigrid smoothing. A particular
feature of Chebyshev smoothing is that it is better able to suppress low-wavenumber error than standard
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Case Fastest Solver TS Iterations
TD

TS

(Tcrs)D
(Tcrs)S

Kershaw (ε = 1) 1st-Cheb, λopt
min, RAS(2,2) 0.09 8 1.75 1.13

Kershaw (ε = 0.3) 1st-Cheb, λopt
min, RAS(5,5) 0.67 28 1.35 1.79

Kershaw (ε = 0.05) 4th
opt-Cheb, RAS(12,0) 2.40 88 1.75 2.31

67 pebble 4th
opt-Cheb, RAS(12,0) 0.37 12.5 1.81 2.41

146 pebble 4th
opt-Cheb, RAS(4,4) 0.15 5.3 1.17 1.21

1568 pebble 4th-Cheb, ASM(12,0) 0.14 3 1.27 2.13

Table 10: Solver configuration with the fastest time to solution.

smoothing strategies. By reducing the number of outer GMRES iterations, these gains in pMG take pressure
off of the coarse-grid solver, which is expensive for large-scale simulations, particularly at exascale and beyond.
In a forthcoming article, we demonstrate that omitting post-smoothing and using pre-smoothing with 4th-kind
Chebyshev polynomials of degree 2k is often superior to pre- and post-smoothing with degree k.

Table 10 summarizes the gains with this strategy for several CEED and NekRS test cases with spectral
elements of order N = 7. Kershaw is a Poisson solve in the unit cube where ε = 1 implies that the mesh is a
uniform array of E = 363 elements (n = 16M), while ε −→ 0 induces an increasing level of mesh distortion
and anisotropy. The other three cases are Navier-Stokes solutions in pebble-bed geometries that are relevant
to DOE’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) project. The number of elements
for S = 67, 146, and 1568 pebbles are respectively E = 122K (n=42M), 62K (n=21M), and 524K (n=180M).
The table presents the method that was found to be the fastest for each test case. (NekRS will automatically
select this method.) The options include 1st-kind and 4th-kind Chebyshev smoothing, with additive Schwarz
(ASM) or restricted additive Schwarz (RAS), and with polynomial smoothing of degrees (kd, ku) on the
respective downward and upward legs of the pMG V-cycle. TS is the solve time and TD is the solve time
for the default NekRS solver. Also indicated are the gains in the coarse-grid solve times. The results show
that the one-sided smoothing is not always the fastest (which is supported by our analysis), but that it
does pay off for challenging mesh configurations. Overall, the gains are anywhere from 17% to 81% over the
Chebyshev-accelerated Schwarz smoothing cycle that is the current default in NekRS.

4.3 Algorithmic tradeoffs for implicit fluids solvers

Recently we considered a libCEED implementation of the discretization used by PHASTA [38], which we’ll
call ceed-fluids. The discretization is an SUPG method for compressible Navier-Stokes in primitive (or
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conservative) variables and the performance test is for a snapshot of turbulent flow over a plate at Mach 0.12
with synthetically-generated turbulent inflow [32]. The freestream advective CFL is about 1, but much higher
in the anisotropic boundary layer and much higher acoustic CFL given the low Mach number. The generalized
α time integrator requires a nonlinear solve each time step. In PHASTA and when running ceed-fluids
with linear elements and assembled sparse matrices, block Jacobi/ILU(0) preconditioning is an attractive
choice, with SpMV and solving with triangular factors running at about the same speed, and large fraction of
STREAM bandwidth. On GPUs, we observe that cuSPARSE sparse triangular solves run about 20× slower
than SpMV. As discussed in the previous section, matrix-vector multiplication for vector-valued problems
(like elasticity and fluids) on linear elements runs about twice as fast when using libCEED unassembled
matrix representation, even without including the cost of assembling the sparse matrices.

As a GPU baseline, we considered GMRES(30) preconditioned by block Jacobi/ILU(0) via PETSc and
cuSPARSE; this configuration achieved comparable execution time per time step as observed with PHASTA
(a primarily CPU-based code running at typically strong scaled to around 80% efficiency). Switching to
BCGS(`) [17] and point-block Jacobi allowed us to forego assembled matrices and cut the execution time per
time step by more than 2×. The initial implementation used cuSPARSE to handle an explicitly-assembled
block-diagonal matrix, and after working with Junchao Zhang from the PETSc team to develop a new
efficient GPU implementation, we observe a further 30% reduction in execution time. Table 11 shows a
representative comparison on Perlmutter using a mesh with 5 million elements running on two nodes (8
GPUs). Note that switching from the gmres/bjacobi/ilu method (good on CPUs, relatively slow on GPUs) to
bcgsl/vpbjacobi results in significantly higher iteration count, but it’s more than paid off by faster execution
efficiency, improving the t0.8 strong scaling performance by roughly 3× as compared to PHASTA.

Method PCApply (s/step) Total solve (s/step) PCApply speedup Total solve speedup

bjacobi/cuSPARSE 0.730 2.849 - -
vpbjacobi 0.142 2.216 5.1 1.29

Table 11: Execution time per preconditioner application and total solve time per
time step for ceed-fluids on 2 nodes of Perlmutter. The new GPU implementation
for variable point-block Jacobi is 5× faster than a mathematically equivalent
preconditioner using cuSPARSE.

4.4 Performance tuning for the non-tensor MAGMA backend on NVIDIA GPUs

Similar to Section 2.5, the recently integrated GEMM selector has tuning data for the V100 and the A100
GPUs. Figure 31 shows the selector’s decisions for the A100 GPU, which shows the importance of the
MAGMA GEMM kernels. Figures 32 and 33 also show the corresponding results for the 3D diffusion
benchmark. We also observe performance gains on both GPUs, especially for low order problem. The original
backend seems to have focused only on larger order problem, which explains the similar performance for such
problems before and after integrating the GEMM selector.

4.5 All-hex meshing for packed beds with contacting spheres

Turbulent flow through randomly packed spherical beds is found in many industrial processes in chemical
and mechanical engineering. The flow of coolant through packed beds is of particular interest in the design
of pebble-bed reactors, and researchers have expressed significant interest in detailed simulations that can
provide insight into heat transfer in new pebble-bed designs. For simulations that resolve turbulent eddies
in the flow, high-order discretizations having minimal numerical dissipation and dispersion provide high
accuracy with a relatively small number of gridpoints, n. In collaboration with the ANL/NEAMS team, we
have developed an all-hex meshing strategy for the interstitial space in beds of densely packed spheres that
is tailored to turbulent flow simulations based on the SEM. The SEM achieves resolution through elevated
polynomial order N and requires two to three orders of magnitude fewer elements than standard finite element
approaches do. These reduced element counts place stringent requirements on mesh quality and conformity.
Our meshing algorithm is based on a Voronoi decomposition of the sphere centers. Facets of the Voronoi cells
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Figure 31: Colormap of the DGEMM selector for the A100

V100-SXM2
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After Tuning

Figure 32: Performance of the 3D diffusion problem using MAGMA’s non-tensor
backend on the V100 GPU.

are tessellated into quad ae swept to the sphere surface to generate a high-quality base mesh. Refinements to
the algorithm include edge collapse to remove slivers, node insertion to balance resolution, localized refinement
in the radial direction about each sphere, and mesh optimization. A particularly important feature of our new
all-hex mesh generator is the use of sphere overlap to avoid singularities at contact points. With this feature,
we are able to better control the void fraction, which is important for realizing the correct overall pressure
drop in the bed [1]. Using Nek5000/RS, we currently performed geometries with 146–1741 spheres using ≈300
elements per sphere (for three radial layers) for contacting spheres, along with mesh quality metrics, timings,
flow simulations, and solver performance. This effort was presented by Yu-Hsiang Lan (UIUC) [24] during
his Argonne Summer Internship at the 2nd North American High Order Methods Conference (NAHOMCon)
held on July 18 and 19 of 2022.

4.6 Spectral elements for coupled PNP-NS solver

In a collaborative effort with the ANL/NEAMS team we have developed a new SEM-based Poisson-Nernst-
Planck Navier-Stokes (PNP-NS) solver describing ion, fluid, and thermal transport relevant to applications in
the energy sector, such as battery function and nuclear reactor performance (e.g., corrosion build-up in molten
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Figure 33: Performance of the 3D diffusion problem using MAGMA’s non-tensor
backend on the A100 GPU

salt reactors [39]). Many of the applications are in complicated domains and have high-Schmidt numbers,
which makes them advection-dominated and challenging for numerical simulation. High-order methods with
minimal numerical dissipation and dispersion offer the potential for reduced computational overhead for this
class of problems. Our approach is to leverage the efficient and scalable parallel algorithms in Nek5000/CEM
for the development of this new solver, ultimate target to be ported into NekRS for GPU runs on various
architectures. The governing equations are cast in a variational framework, based on a continuous Galerkin
formulation in space and a kth-order semi-implicit formulation in time using backward-differences combined
with extrapolation. We discuss important features of this complex multiphysics system, including imposition
of the electro-neutrality constraint and treatment of the nonlinear electrokinetic boundary conditions. We
conducted validation studies demonstrating the expected spatial and temporal accuracy for this SEM-based
solver and compared with several numerical and experimental results to confirm the correctness of the
proposed model and discretization. This effort was presented by Yimin Lin (Rice University) [25] as an
outcome of continuing work from his Argonne Summer Internship at the 2nd North American High Order
Methods Conference (NAHOMCon) held on July 18 and 19 of 2022.

4.7 Exascale simulation workflow

A major recent development in Nek5000 and NekRS has been to extend and test the entire workflow chain to
support up to 2 billion spectral elements. For typical polynomial orders, this level of support will lead to
the solution of problem sizes n = 0.7–1.0 trillion grid points (3–4 trillion degrees-of-freedom), which is the
anticipated problem size for full exascale runs.

When using a private-memory model such as MPI, scaling to extremely large problems does not present
significant difficulties for the bulk of the code because the local problem sizes are small enough that all indexing
can be done with 32-bit integers. (Global indexing is effectively based on a pair of 32-bit integers—the target
MPI rank and the index on that rank.) Moreover, the scalability of our solvers, both from an algorithmic
and implementation standpoint, is well understood out to millions of ranks.

At setup, however, the simulation problem appears monolithic and homogeneous, so there are certain
arrays where 64-bit integer indexing is required. Most of these routines have now been updated and tested
in Nek5000/RS, at least out to global element counts of up to E = 231. Some additional routines in I/O
and parallel partitioning have been updated so that they will not be bottlenecks as we move to support the
largest simulations that will be enabled by exascale computing.

5. OTHER PROJECT ACTIVITIES

Exascale Computing Project (ECP) 34 CEED-MS39



5.1 Sixth CEED annual meeting

The CEED project held its sixth annual meeting August 9-11, 2022 in a hybrid format: in-person at the
Siebel Center for Computer Science on the UIUC campus in Urbana and virtually using ECP Zoom for
videoconferencing and Slack for side discussions with participation from 88 researchers from 7 national labs,
18 universities and 6 companies. The goal of the meeting was to report on the progress in the center, deepen
existing and establish new connections with ECP hardware vendors, ECP software technologies projects and
other collaborators, plan project activities and brainstorm/work as a group to make technical progress. In
addition to gathering together many of the CEED researchers, the meeting included representatives of the
ECP management, hardware vendors, software technology and other interested projects. See the meeting
page at https://ceed.exascaleproject.org/ceed6am for additional information.

5.2 Nek user meeting

A Nek5000/RS user/developer meeting was held 8/12–8/13/22. This is the first meeting since 2018. A total
of 35 researchers from Europe, Asia, and the U.S. met in person at the meeting venue at the University of
Illinois’ Seibel Center for Computer Science. The agenda included a two-hour NekRS overview as well as
numerous talks by senior researchers and students from applied mathematics, computer science, mechanical
engineering, nuclear engineering, and aerospace. Researchers discussed issues relating to model development,
performance, low-dimensional modeling, and physics. One of the most salient remarks of the meeting, made
by Elia Merzari (PSU), was Once students switch from Nek5000 to NekRS, they never want to go back!. This
remark reflects the tremendous performance gains when running NekRS on advanced GPUs, such as the
NVIDIA V100 or newer processors, which is 150–200× faster than running on a single core of a CPU.

5.3 SIAM-CSE 2023 and ICOSAHOM 2023 participation

The CEED team is organizing two minisymposiums at the SIAM Conference on Computational Science and
Engineering (CSE23), inviting 16 speakers from various institutions in US and Europe. Two of the CEED
members are also invited to the local organizing committee of the 2023 International Conference on Spectral
and High Order Methods

5.4 ALCF GPU hackathon on Polaris

Four members of Nek5000/RS team (M. Min, Y. Lan, P. Fischer, T. Rathnayake), with Kris Rowe (ALCF)
and Peng Wang (NVIDIA) as mentors, participated in the ALCF GPU Hackathon on Polaris, which was
held on 7/19/22, and 7/26–7/28/22. During the Hackathon activities, the team ported NekRS to Polaris and
performed scaling tests for various problem sizes of the ExaSMR 17×17 rod-bundle geometry. In comparison
to NekRS results on Crusher, Perlmutter and Summit, we initially found slower performance on Polaris, which
initially did not support GPUDirect. During the hackathon, Polaris was upgraded to support GPUDirect.
NekRS performance tests significantly improved to be slightly faster than Perlmutter (see Section 2.1 for
details). During this time, our detailed performance studies identified a performance regression as Perlmutter
migrated from Slingshot 10 to Slingshot 11. This regression is still being analyzed. During the hackathon,
the Nek team with assistance from Aleks Obabko (ANL) also ported NRC’s PANDA problem to GPUs for
the first time. They provided the scientists studying PANDA with a performance report demonstrating that
NekRS on Polaris provides a 10× gain over Nek5000 on Theta at the strong-scale (80% efficiency) limit.

5.5 MFEM tutorial on AWS

The MFEM team held a cloud computing tutorial as part of LLNL’s RADIUSS AWS tutorial series. The
tutorial provided a self-paced overview of MFEM and its use for scalable finite element discretizations and
application development. 178 participants followed the web-based lessons in their own Amazon EC2 instances.
See the tutorial page at https://mfem.org/tutorial for additional information.
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5.6 NekRS contribution to Cardinal, 2022 R&D100 finalist

Cardinal, an open-source simulation software package for high-fidelity multiphysics solutions, was named a final-
ist for the 2022 R&D 100 awards. The full team of Cardinal developers includes two CEED embers (Misun Min
and Paul Fischer) with Argonne Nuclear Engineers (April Novak, Richard Martineau, Elia Merzari, Paul Ro-
mano, Dillon Shaver and Patrick Shriwise). One of the key solvers integrated in the Cardinal software is NekRS.
NekRS leverages high-order discretizations on high-performance graphics processing units (GPUs) to provide
Cardinal users with reduced simulation times, particularly on pre-exascale and exascale leadership computing
platforms that are being deployed at Argonne, Livermore and Oak Ridge National Laboratories. For more de-
tails, see https://www.anl.gov/mcs/article/cardinal-simulation-software-named-finalist-for-2022-rd-100-awards.

5.7 2023 INCITE submission

In collaboration with ExaSMR and NEAMS team, Nek team participated 2023 INCITE proposal submission
on “Full-Core RANS-LES at Exascale: Breaching the Billion Spectral Element Mark”, authored by Elia
Merzari, Paul Fischer, Misun Min, April Novak, and Jun Fang.

6. CONCLUSION

The goal of this milestone was to port the CEED software stack, including Nek, MFEM and libCEED to
Frontier and/or Aurora early access hardware, work on optimizing the performance on AMD and Intel GPUs,
and demonstrate impact in CEED-enabled ECP applications.

As part of this milestone, we also organized the next CEED annual meeting (CEED6AM) which included
representatives from ECP applications, vendors and software technology projects, hosted the Nek user meeting
and MFEM AWS tutorial, and worked on a number of additional software and algorithmic improvements.
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